

WG4: SRF Linac Driven Subcritical Core

Accelerator Design Requirements for Driven Systems

Transmutation Mission

Tomas JUNQUERA, CNRS-IN2P3 / IPN Orsay, France
October 20th, 2009

The EUROTRANS projet

EURopean research program for the TRANSmutation of high level nuclear waste in an Accelerator Driven System

Main GOALS of the EUROTRANS program

- Advanced design of a 50-100 MWth eXperimental facility demonstrating the technical feasibility of Transmutation in an ADS (XT-ADS/MYRRHA, short-term realisation)
- Generic conceptual design (several 100 MWth) of a European Facility for Industrial Transmutation (EFIT, long-term realisation)

Transmutation Demonstration

1. MYRRHA/XT-ADS (ADS prototype)

Goals:

- Demonstrate the concept (coupling of accelerator + spallation target + reactor),
- Demonstrate the transmutation
- Provide a fast-spectrum irradiation facility for material & fuel developments

Features:

- 50-100 MWth power
- k_{eff} around 0.95
- 600 MeV, 2.5 mA proton beam
- Highly-enriched MOX fuel
- Pb-Bi Eutectic coolant & target

2. EFIT (Industrial Transmuter)

Goals:

- Maximise the transmutation efficiency
- Easiness of operation and maintenance
- High level of availability for a cost-effective transmutation

Features:

- Several 100 MWth power
- k_{eff} around 0.97
- 800 MeV, 20 mA proton beam
- Minor Actinide fuel
- Pb coolant & target (gas as back-up solution)

Table 1 – XT-ADS and EFIT proton beam general specifications

	XT-ADS		EFIT		
Maximum beam intensity	2.5 – 4 mA			20 mA	
Proton energy	600 MeV			800 MeV	
Beam entry	Vertically from above				
Beam trip number	< 20 per year (exceeding 1 second)			1 second)	
Beam stability	Energy: ± 1 %, Intensity: ± 2 %, Size: ± 10 %				
Beam footprint on target	Circular ∅ 5 to 10 cm, "donut-shaped" An area of up to 100 cm² must be "paint-able" with any arbitrary selectable intensity profile				
Beam time structure	CW, with 200 μs zero-current holes every 10 ⁻³ to 1 Hz, + pulsed mode capability (repetition rate around 50 Hz)				

ADS linac reference scheme

SUPERCONDUCTING LINAC

Highly modular and upgradeable; Excellent potential for reliability; Very good efficiency

352 MHz RFQ characteristics

Parameters Values Beam Current [mA] 30 Frequency [MHz] 352 Input Energy [keV] 50 Output Energy [MeV] 3.0 Inter-Electrode Voltage [kV] 65 Kilpatrick Factor 1.69 $\varepsilon_{in}^{trans., n., rms}$ [π mm-mrad] 0.20 Output Synchronous Phase [°] -28.8 Minimum Aperture [cm] 0.23 Maximum Modulation 1.79 $\varepsilon_{out}^{x., n., rms} [\pi \text{ mm-mrad}]$ 0.21 $\varepsilon_{out}^{y., n., rms} [\pi \text{ mm-mrad}]$ 0.20 $\varepsilon_{out}^{z, rms}$ [MeV-deg] 0.09 Electrode Length [cm] 431.8 Beam Transmission [%] 99.9

352 MHz DTL characteristics

Cavity	Gaps (φ _s [°])		Length [cm]	W _{s,out} [MeV]	Eacc* [MV/m]
Rebuncher I	2	(-90°)	~7	3.0	2.79
RT-CH	11 4 8	(0°) (-40°) (0°)	~160	5.2	2.72
Rebuncher II	2	(-90°)	~7	5.2	5.11
SC-CH I	3 10	(-40°) (0°)	~90	7.5	3.99
SC-CH II	4 10	(-40°) (0°)	~105	10.4	3.97
SC-CH III	4 12	(-40°) (0°)	~130	14.3	3.98
SC-CH IV	4 12	(-40°) (0°)	~145	18.3	3.96

^{*} Eacc: active acceleration gradient.

- Classical 4-vane RFQ with moderated Kp
- DTL booster using CH structures (KONUS beam dyn.)
- 17 MeV gained in less than 15 metres

Superconducting linac

Section number 1 2 3 4		•	_		,		
Section number 1 2 3 4	352 MHz			INAC 0.5		704 MHz ELIPTICAL LINA	
Input Energy [MeV] 17 90 190 450 Output Energy [MeV] 90 190 450 610 Cavity Technology Spoke 352 MHz Elliptical 704 MHz Structure β 0.35 0.47 0.65 0.85 Number of cavity cells 2 5 5 6 Number of cavities 60 30 42 16 Focusing type NC quadrupole doublet Cavities/Lattice 3 2 3 4 Synch Phase [deg] -40 to -18 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34	0-0-0			25 25	25 25		25 30 25
Output Energy [MeV] 90 190 450 610 Cavity Technology Spoke 352 MHz Elliptical 704 MHz Structure β 0.35 0.47 0.65 0.85 Number of cavity cells 2 5 5 6 Number of cavities 60 30 42 16 Focusing type NC quadrupole doublet Cavities/Lattice 3 2 3 4 Synch Phase [deg] -40 to -18 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Section number	1	2	3	4	
Cavity Technology Spoke 352 MHz Elliptical 704 MHz Structure β 0.35 0.47 0.65 0.85 Number of cavity cells 2 5 5 6 Number of cavities 60 30 42 16 Focusing type NC quadrupole doublet Cavities/Lattice 3 2 3 4 Synch Phase [deg] -40 to -18 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Input Energy [MeV]	17	90	190	450	
Structure β 0.35 0.47 0.65 0.85 Number of cavity cells 2 5 5 6 Number of cavities 60 30 42 16 Focusing type NC quadrupole doublet Cavities/Lattice 3 2 3 4 Synch Phase [deg] -40 to -18 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Output Energy [MeV]	90	190	450	610	
Number of cavity cells 2 5 5 6 Number of cavities 60 30 42 16 Focusing type NC quadrupole doublet Cavities/Lattice 3 2 3 4 Synch Phase [deg] -40 to -18 -36 to -15 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Cavity Technology	Spoke 352 MHz	E	Elliptical 704 MH	Z	
Number of cavities 60 30 42 16 Focusing type NC quadrupole doublet Cavities/Lattice 3 2 3 4 Synch Phase [deg] -40 to -18 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Structure β	0.35	0.47	0.65	0.85	
Focusing type NC quadrupole doublet Cavities/Lattice 3 2 3 4 Synch Phase [deg] -40 to -18 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Number of cavity cells	2	5	5	6	
Cavities/Lattice 3 2 3 4 Synch Phase [deg] -40 to -18 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Number of cavities	60	30	42	16	
Synch Phase [deg] -40 to -18 -36 to -15 Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Focusing type		NC quadrupole	e doublet		
Lattice length [m] 2.5 4.1 5.7 8.4 Section Length [m] 50 61 80 34		Cavities/Lattice	3	2	3	4	
Section Length [m] 50 61 80 34		Synch Phase [deg]	-40 to -18		-36 to -15		
		Lattice length [m]	2.5	4.1	5.7	8.4	
<pre><gradient> [MeV/m]</gradient></pre>		Section Length [m]	50	61	80	34	
		<gradient> [MeV/m]</gradient>	1.4	1.6	3.4	4.7	

- Modular, independently-phased accelerating structures
- Moderate gradients (50mT B_{pk}, 25MV/m E_{pk}) & energy gain per cavity
- Overall length: about 225 metres

Final beam line to reactor

- Final beam line guarantees the position of the beam spot and ensures that only particles of nominal energy are delivered (doubly-achromatic lines)
- Also guarantees the required "donut-shape"
 distribution at the target (redundant beam scanning)

Advanced reference design: Beam Dynamics

... with assessed start-to-end beam dynamics

- Linac Tuning: using non destructive on line beam diagnostics
- Reliability: fault scenarios
- Beam losses (< 1 W/m)

Code package crucial capabilities

- ✓ « Close to real » beam tuning procedures using simulated diagnostics.
- ✓ <u>Use of 3D field maps</u> for most of the elements (focusing magnets, RF cavities), high-order aberrations taken into account for the others (dipoles)
- ✓ Possibility to perform <u>statistical error studies</u>

Main Reliability Requirement: Beam Trips

Very low number of trips (< 1 sec)

- to avoid thermal stresses & fatigue on the ADS target, fuel & assembly
- to provide good availability.
- SPECIFICATION: less than N per operation cycle (3 months 1 month stop)
 (N~5 for MYRRHA / XT-ADS)

Major guidelines to improve reliability:

- 1. Strong component design ("overdesign", "derating")
- 2. Inclusion of **redundancies** in critical areas
- 3. Enhance the capability of fault-tolerant operation

Front end: Redundancy

Strong Component Design (derating)

- SRF cavities Accelerating Gradients: important margins
- RF power amplifiers: important margins
- Couplers, tuners: robust design
- RF control electronics: robust design

Beam trip Thermal Transient Calculations

Fast fault-recovery scenario

retuning should be performed in less than 1 second in the case of a failure event

Definition of a reference "fast fault-recovery scenario"

detect (or anticipate) the RF fault (via dedicated diagnostics & interlocks)
 trigger beam shut-down

< 1 sec

- update the new LLRF field and phase set-points of the correcting cavities (data have been determined & stored in FPGAs during commissioning)
- detune the failed cavity (w/ piezo-actuators) and switch off the failed RF loop
- trigger beam re-injection once steady state is reached

Classical Linac reliability analysis

GOAL of the ANALYSIS

- Estimate the number of malfunctions of the XT-ADS accelerator that cause a beam/plant shutdown, per period of operation (3 months = 2190 hours)
- Analyse the influence of MTBFs (Mean Time Between Failures), MTTRs (Mean Time to Repair), and of the degree of redundancy & fault-tolerance on the results
- Goal MTBF: better than 500 hours

Linac reliability analysis

CLASSICAL LINAC DESIGN

- "all-series" (simplified) components
- every component failure leads to a global system failure
- poor MTBF, mostly due to the ~150 RF units

RELIABILITY-ORIENTED DESIGN

- same components MTBFs
- duplicated injector with fast switching magnet
- fault-tolerance in the SC linac

System MTBF	757.84 hours
Nb of failures (3 months)	2.89
Steady State Availability	99.5 %

Code	Component	MTBF (h)	MTTR (h)	Source see source table)
EE	Extraction electrode	100000	10	3
RQ	RFQ	1200	10	1
CI	Circulator	50000	10	6
KL	RF source	10000	10	4, 2
HV	HVPS	4500	10	HYPOTHESIS
LL	LLRF	1.00E+05	10	1, 4, 4, 6
TR	Transmitter	5000	10	6
IM	Water-cooled magnet	1000000	10	5
PS	Magnets Power Supply	8000	10	2
WC	Cooling system (water)	4500	10	HYPOTHESIS
BV	Vacuum pump (any type)	20000	10	2, 3
WI	RF window	100000	10	6
FU	Serious leak in vacuum system	8000	10	HYPOTHESIS

	Project	Document	Denomination	Link
1	Miscellaneous	Eurotrans Deliverable 63	Table 4-4 – Reliability characteristics of the components used for the RBD analysis.	
2	Los Alamos Neutron Science Center (LANSCE)	Eurotrans Deliverable 57	Table 4: Results of reliability studies at LANSCE.	
3	International Fusion Materials Irradiation Facility (IFMIF)	IFMIF CDA Final Report	IFMIF CDA Final Report	http://www.frascati.enea.i t/cda/FinalReport/sec2_6 -15.html
4	US Department of Energy	ORNL/TM- 2000/93	Computation of Normal Conducting and Superconducting linear Accelerator Facilities	http://www.ornl.gov/~web works/cpr/rpt/108020pd f
5	International Linear Collider (ILC)	SLAC-PUB- 12606	Availability and reliability for ILC	http://www.slac.stanford. edu/cgi- wrap/getdoc/slac-pub- 12606.pdf
6	Spallation Neutron Source (SNS)	2001 Particle Accelerator Conference, Chicago	An Availability Model for the SNS Linac RF System	

MTBF results

without cryogenic systems

Conclusions:

- Reliability: need of more calculations and experimental results on thermal stress and fatigue of reactor components
- design optimisation (cost reductions if some risks are acceptable)
- additional specifications for beam power ramping up/down (after beam trips)
- more specifications on <u>interfaces</u> between accelerator beam systems and ADS core (safety aspects)
- develop the study, prototyping and test of all electronics and computing systems playing a role in fault handling, in order to allow fault-tolerance